三角函数的应用已经突破常见的课本应用坡比及方位,仰俯角的内容,进一步结合生活中的应用进行结合,不断的创新。
对于创新类的三角函数,实际内容为解三角形问题,无非就是在三角形中进行线段的求解。
一:三角函数创新构造直角三角形
题目求解的目标线段在没有直角三角形的情况下需要果断构造直角三角形,尤其求解线段为高,顶点到底边的线段时最为明显。
1.为给人们的生活带来方便,共享单车的租赁在我市正方兴未艾.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
(1)求AD的长;
(2)求点E到AB的距离(结果保留整数).
2.桑梯是我国古代发明的一种采桑工具.图1是明朝科学家徐光启在《农政全书》中用图画描绘的桑梯,其示意图如图2所示,已知AB=AC=1.5米,AD=1.2米,AC与AB的张角为α,为保证安全,α的调整范围是30°≤a≤60°,BC为固定张角α大小的绳索.
(1)求绳索BC长的最大值.
(2)若α=40°时,求桑梯顶端D到地面BC的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,最后结果精确到0.01米)
二:三角函数创新两角一边
圭表(如图1)是我国古代度量日影长度的天文仪器,它包括一根直立的杆(称为“表”)和一把南北方向水平放置且与杆垂直的标尺(称为“圭”).当正午的阳光照射在“表”上时,“表”的影子便会投射在“圭”上.我国古代历法将一年中白昼最短的那一天(当日正午“表”在“圭”上的影子长度为全年最长)定为冬至;白昼最长的那一天(当日正午“表”在“圭”上的影子长度为全年最短)定为夏至.
某地发现一个圭表遗迹(如图2),但由于“表”已损坏,仅能测得“圭”上记录的夏至线与冬至线间的距离(即AB的长)为11.3米.现已知该地冬至正午太阳高度角(即∠CBD)为35°34′,夏至正午太阳高度角(即∠CAD)为82°26',请通过计算推测损坏的“表”原来的高度(即CD的长)约为多少米?(参考数据:sin35°34′≈0.58;cos35°34′≈0.81;tan35°34′≈0.72;sin82°26'≈0.99;cos82°26'≈0.13;tan82°26'≈7.5)